
as2api Documentation

Table of Contents
About ... 1
Getting the software .. 1
Command-line Reference ... 1
How to Write Documentation .. 3

Overview ... 3
Writing Useful Documentation .. 4
Syntax Overview .. 5
Syntax Reference .. 6

About
as2api parses ActionScript 2 source code and generates HTML API documentation in the style of
JavaDoc. It is open source, and runs on Windows, MacOSX and Linux.

Getting the software
There are three versions of the software available from the project homepage, ht-
tp://www.badgers-in-foil.co.uk/projects/as2api/:

• A single-file, command-line executable for MacOSX

• A single-file, command-line exe for Windows

• The source ruby scripts, runnable from the command-line under Linux (or anywhere else that Ruby
is available)

Command-line Reference

1

http://www.badgers-in-foil.co.uk/projects/as2api/
http://www.badgers-in-foil.co.uk/projects/as2api/

Name
as2api -- ActionScript 2 API reference documentation generator

as2api [--help] [--output-dir path] [--classpath path] [--title title-text] [--progress]
[--encoding encoding-name] [--draw-diagrams] [--dot-exe executable-path-and-name]
[--sources] package-spec...

Options

Arguments can be given in any order. package-spec is required.

package-spec You must specify at least one package of types to be documented,
and may specify multiple packages:

as2api org.example.utils com.yoyodyne.app

If you want to document all packages who's names share a com-
mon prefix, you can avoid listing each package individually by
giving the package prefix with the suffix '.*':

as2api com.yoyodyne.gui.*

--help, -h, Causes the program to exit immidiately after showing some brief
usage instructions.

--output-dir path, -d
path,

path specifies the location where the generated HTML files
should be placed. If unspecified, the default location will be
apidocs, within the current directory.

If path does not exist, it will be created.

--classpath path The path is a list of directories in which as2api should search for
source code. If no classpath is specified, as2api just searches
within the current directory. Items within the list should be seper-
ated by the platform-dependant path seperator:

Windows --classpath dir1;dir2

OSX,
Unix,

--classpath dir1:dir2

Note that if one of the directories in the classpath contains spaces,
you will need to enclose the whole classpath in quotes:

--classpath "C:\Documents and Settings\dave\as;dir2"

--title title-text Some text to be included in the titles of generated pages (e.g. the
name of the software project / library).

--progress Causes some extra progress information to be shown as the pro-

as2api Documentation

2

gram runs

--encoding encoding-name The encoding for the generated HTML files. Note that this must
match the encoding of all input source files; no transcoding is per-
formed. as2api cannot handle a mixture of file encodings in the
set of source files to be proccessed.

--draw-diagrams Enables the generation of inheritance diagrams on package over-
view pages. This requires the external dot tool from the graphviz
package. If you have downloaded graphviz, but the tools are not
available in the standard system PATH, you will need to specify
the location of dot by adding --dot-exe to the command line.

--dot-exe executable-
path-and-name

Explicitly names the dot executable to use, should this not be
available in any of the standard locations on your system.

--sources Enables the inclusion of a copy of the source code of each docu-
mented type in the generated HTML. The source will be conver-
ted to an HTML file with 'syntax highlighting'.

How to Write Documentation
Overview

ActionScript Comments

ActionScript 2 provides two kinds of comment marker, for denoting text which is not part of the execut-
able program code. There is the C++ style single-line comment,

// everything on the line after the two slashes
// is ignored

and the C style multi-line comment,

/* text between start and end markers is
ignored, and the comment may continue across
multiple lines in the source code */

as2api Documentation Comments

as2api ignores the single-line comments, but it will read text from the multi-line comments if both the
following conditions are true,

• The start-of-comment marker has two asterisks, not just one: "/**"

• The comment immediately precedes the definition of part of the public API of an ActionScript 2
class (e.g. just before the class definition itself)

Example 1. A Simple class definition with as2api documentation

as2api Documentation

3

/*
* MyFirstClass.as
*
* Copyright (c) __MyEmployer__ 2005
*
* The contents of this comment are ignored
*/

import "otherpackage.MyOtherClass";

/**
* Objects of this class are responsible for
* serving as an example to others.
*/
class thispackage.MyFirstClass {

/**
* When called, this method puts into motion a
* plan so cunning that words cannot describe it.
*/
public function enactCunningPlan():Void {

// TODO: implement cunning plan
}

}

Writing Useful Documentation
Here are a few guidelines

Empathy!

Take a deep breath.

Take five (mental) paces back from your code.

Try to see the API from someone else's point of view. It will help if you imagine that this other person is
lazy, but not stupid. They want to gain the maximum understanding with the minimum amount of read-
ing.

Describe the Interface, not the Implementation

Classes are useful because they can hide the complicated details of how things are achieved behind a
simple, black-box interface.

If part of a class's implementation can be changed, and no code making use of the class would notice,
then this is an implementation detail, not part of the API which must be documented.

Avoid Repeating the Code in English

This kind of annotation is not useful:

/**
* Set the name property
* @param name the name to set
*/
public function setName(name:String):Void {
// ...

}

as2api Documentation

4

Method and class names are an integral part of the API documentation, and should already convey a use-
ful overview of their own purpose.

Syntax Overview
The javadoc-style syntax supported by as2api allows the contents of javadoc comments to contain spe-
cial javadoc 'tags' to add extra meaning, and XHTML tags if extra formatting (e.g. tabulated informa-
tion) is required.

If the first non-whitespace characters on a line within a comment are one or more asterisks (the '*' char-
acter), then everything upto and including the initial asterisks on the line will be stripped before it
reaches the documentation. This allows you to use the common comment formatting idiom whereby the
left-hand margin of the comment is marked with a column of asterisks.

Example 2. Initial Asterisks on Comment Lines

/**
* This is an
* example
*/

The documentation will include the text “This is an example”; the '*' characters before the words This
and example will disappear.

Javadoc tags appear in two forms, block tags, such as @throws, and inline tags, such as {@link}.

Tags that are allowed in some contexts may not be allowed in others. For instance @throws is allowed
to appear in the documentation of methods, but not in the documentation of classes. See the Syntax Ref-
erence below for the full details.

Block Tags

Documenation-comment is split into 'blocks'. The first block is always a general description of the API
element to which the comment is attached. No special tag is required to denote this description block.
Further blocks are added to the comment with block-tags, which must always appear at the beginning of
a new line.

Example 3. Valid Block-Tag Usage

/**
* So then this is the
* description.
* @throws Error in all cases
*/

Example 4. Invalid Block-Tag Usage

/**
* So then this is the

as2api Documentation

5

* description. @throws Error in all cases
*/

Example 5. Block-Tag With Newlines

/**
* So then this is the
* description.
* @throws Error in all cases
*
* text appearing here is still part of the 'throws'
* block
*/

Inline Tags

Inline tags can appear within the middle of a line of comment text (unlike block-tags, which must al-
ways appear at the start of a line). Inline tags are always surrounded by curly braces (the '{' and '}' char-
acters) so that as2api can tell them appart from 'normal' text.

XHTML Tags

Example 6. XHTML Markup in Comments

/**
* The allowed values are:
*
* 0.1
* 0.01
* -6.66
*
*/

Syntax Reference

Supported JavaDoc Features

Feature Description

Type Description Describe a class or interface

Member Description Describe a field/method of a class or interface

@param Describe a method parameter

@return Describe the value returned by a method

@see Partially supported. Link to additional information.

@throws,
@exception

Describe an exception thrown by a method

{@link} Link to the documentation of another type or type-member

as2api Documentation

6

Feature Description

{@code} A code example (automatically escapes HTML special characters, like '&'

Unsupported JavaDoc Features

Feature Commentary

@author

{@docRoot}

@depricated

{@inheritDoc}

{@linkPlain}

{@literal}

@serial

@serialData

@serialField

@since

{@value}

@version

Unsupported ActionScript Features

Feature Commentary

#include "file-
name"

includes are ignored

[attributes] attributes on types/members are not documented

Class/Interface Description

A doc-comment immediately before a class or interface is taken to be a description of that class. The
text here will be placed at the top of the page documenting the class's public fields and methods.

The first sentence of the class description will also be included in the package-level index of classes and
interfaces. It should therefore try to give a brief overview of the class's purpose

Example 7. Class Description

/**
* An immutable, type-safe wrapper around the
* String value of the user identifier.
* The constructor will raise an exception if
* the given value is not of the correct format,
* asserting that the GUI validation code has
* done its job, and preventing invalid data
* being sent to the backend.
*/
class thispackage.UserId {

as2api Documentation

7

// ...
}

May contain. @see

Member Description

A doc-comment immediately before a method or field is used as the description of that member. The
text here will be added to this members section in the type's API reference.

Example 8. Member Description

/**
* Clears all data that has previously been
* collected in this object, and returns it to
* its initial state. Subclasses are expected
* to override this method to clear any state of
* their own, and use super() ensure that data
* defined by this class is cleared too.
*/
public function clear() {

// ...
}

When implicit fields are created (using function get foo() or function set foo() meth-
ods), an entry will be created for this in the 'Fields' section of the resulting documentation (not in the
'Methods' section). If both get and set methods are defined for a field, as2api will 'pick' the doc-
comment from one of them to use as documentation for the resulting field. If only one of get or set
are defined, the documentation will note that the field is read-only or write-only, as appropriate.

May contain. @param, @return, @see

Method Parameters

Within the doc-comment describing a method, @param tags may be used to give a description for each
of the method's parameters. Immidiately following the @param must be the name of the parameter to be
described, with any text following this name being used as the description.

Arguments named in @param tags must match the names of the actual method arguments, or they will
be skipped. The special parameter name '...' may be used if the method can accept a variable number of
paramters (by inspecting it's arguments array.

Example 9. Method Parameters

/**
* For each value contained by this object, invoke
* the given callback function, passing the value
* as an argument.
*
* @param callback callback function to be invoked
* for each object. The function must accept
* one parameter (or two, if index is true).
* @param index if true, each invocation of the

as2api Documentation

8

* callback function will be passed an
* additional second parameter giving the
* index of the current value (starting with
* 0 for the first value, 1 for the second,
* and so on).
* @param ... any additional arguments to be passed
* to the callback function.
*/
public function each(callback:Function,

index:Boolean):Void {
// ...

}

Method Return Values

A description of the value returned by a method, where the method description itself does not give this
information succinctly enough.

Example 10. Method Return Values

/**
* Get the value corresponding to the given key
* by searching in the local cache first, then
* in the database on the LAN, and finally
* consulting a number of LDAP servers from
* around the wider internet.
*
* @return either the value for the given key, or
* null if there is no such mapping.
*/
public function get(key:String):String {

// ...
}

Links to Related Information

TODO

Example 11. Class Related information

/**
* See-also tags will be copied to the output HTML,
* but are not actually turned into links to other
* classes/methods as they should be.
*
* @see "some stuff"
* @see some.OtherClass
* @see some.OtherClass#field_name
* @see some.OtherClass#method_name()
*/
class somepackage.ThisClass {

// ...
}

as2api Documentation

9

Exceptions Thrown by a Method

TODO

Example 12. Exceptions Thrown by a Method

/**
* Causes this message to be sent
*
* @throws MessagingException if there is a failure
* in the underlying communications medium
*/
public function send():Void {

// ...
}

Linking to Other Parts of the API Documentation

TODO

Example 13. Linking to Other Parts of the API

/**
* Causes this message to be sent to the
* {@link OtherClass} instance, where it will be
* dealt with by {@link OtherClass#recieve()}. We
* remember the destination in our {@link #reciever}
* field.
*/
public function send():Void {

// ...
}

Giving Code Examples

The code tag is provided to allow example ActionScript source code to be included in the documenta-
tion. The advantage of {@code} over simply using the HTML <code> tag is that you don't need to
worry about 'escaping' characters (like '&', which are special in HTML) within the example code.

In addition, as2api will apply 'syntax highlighting' to the text within {@code}, which makes it look
pretty. The disadvantage of this is that you can expect to see problems if you make certain classes of
syntax error in the contents of the tag (e.g. failing to close a string literal).

Example 14. Example Code

/**
* Generates an ending XML tag. For example, if
* passed {@code "p"}, the result will be
* {@code "</p>"}
*/

as2api Documentation

10

public function endTag(name:String):String {
// ...

}

{@code} may span multiple lines, and when this happens, the resulting documentation will include an
HTML <pre> around the code so that its formatting is preserved.

Larger ActionScript code examples may need to include braces (the '{' and '}' characters), however the
end of the {@code} will be marked by the closing brace. Nested braces are allowed within {@code},
but each opening brace, must have a matching closing brace.

Example 15. Complex, multi-line code

/**
* Returns the result of calling startTag(), the
* given bodyGenerator function and endTag(),
* concatenated together. For example, one might
* pass an anonymous function:
* {@code
* out.element("head", function() {
* return "some dynamicaly generated content";
* });
* }
*/
public function element(name:String,

bodyGenerator:Function):String {
// ...

}

as2api Documentation

11

	as2api Documentation
	Table of Contents
	About
	Getting the software
	Command-line Reference
	as2api

	How to Write Documentation
	Overview
	ActionScript Comments
	as2api Documentation Comments

	Writing Useful Documentation
	Empathy!
	Describe the Interface, not the Implementation
	Avoid Repeating the Code in English

	Syntax Overview
	Block Tags
	Inline Tags
	XHTML Tags

	Syntax Reference
	Supported JavaDoc Features
	Unsupported JavaDoc Features
	Unsupported ActionScript Features
	Class/Interface Description
	Member Description
	Method Parameters
	Method Return Values
	Links to Related Information
	Exceptions Thrown by a Method
	Linking to Other Parts of the API Documentation
	Giving Code Examples

